
Comparing Predictive Performance Of Chess Ratings

With The PlayerRatings Package

Alec Stephenson

April 6, 2012

Summary

This document presents examples of the use of PlayerRatings, analysing different meth-
ods for rating chess players. The analysis justifies the following two recommendations for
consideration of FIDE: (1) that the K factor is increased by 5 for players who have played
30 or more games (2) that a second player rating not based on the Elo system is intro-
duced.

1 Functions and Datasets

The PlayerRatings package implements iterative updating systems for rating players
(i. e. individuals or teams) in two-player games. These methods are fast and surprisingly
accurate. The idea is that given games played in time period t, the ratings can be updated
using only the information about the status of the system at the end of time period t− 1,
so that all games before t can be ignored. The ratings can then be used to predict the
result of games at time t + 1. Comparing the game predictions with the actual results
gives a method of evaluating the accuracy of the ratings as an estimate of a player’s true
skill.

The result of a game is considered to be a value in the interval [0, 1]. The status of the
system is typically a small number of features, such as player ratings, player rating (stan-
dard) deviations, and the number of games played. The more computationally intensive
(and often slightly more accurate) approaches of using the full gaming history via a time
decay weighting function is not considered here.

The functions elo and fide implement the Elo system, the function glicko implements
the Glicko system, and the function sticko implements the Sticko system. There are other
functions to aid incorporating addition complexity into the K factor of the Elo system, to
predict the result of future games, to produce appropriate plots, and to evaluate predictive
performance.

The relative predictive performance obtained in the following examples may be different
for different datasets, and even for different pieces of the same dataset. The functions
relating to FIDE (World Chess Federation) do not reproduce important aspects of their
methods, and are not official implementations of any kind (see Section 4 for details).

1

2 Modelling and Prediction

In this section we will demonstrate the features of the package by comparing the predictive
performance of alternative methods applied to data on chess games. The chess dataset
contains approximately 1.8 million games played over the eleven year period 1999− 2009
by 54205 chess players. We will use the first nine years of data. We take training data
from the period 1999 − 2005, test data from the year 2006 and validation data from the
year 2007.

> train <- chess[chess$Month < 84.5,]

> trainM <- train$Month

> test <- chess[chess$Month > 84.5 & chess$Month < 96.5,]

> testS <- test$Score

> valid <- chess[chess$Month > 96.5 & chess$Month < 108.5,]

> validS <- valid$Score

> cSt <- chessStart

The dataset chessStart contains FIDE ratings for 14118 chess players at January 1999,
before the data in the chess dataset were recorded. We use chessStart in the following
functions to initialize the system. This is not a required argument, however if the infor-
mation exists it makes sense to use it. It is not an ideal initialization for all systems, but
appears to always work better than initializing every player to fixed values. Other players
that subsequently enter the system are initialized according to the argument init.

All modelling functions in the package can be used to update player ratings over several
time periods, or over individual time periods. For example, the following code uses the Elo
system to iteratively update the chess ratings once every month for each of the 84 months
in the train data. The state of the system is contained in the ratings component of the
returned object, which can then be passed back into the function for subsequent updates.

> robje1 <- elo(train[trainM==1,], cSt)

> for(i in 2:84) robje1 <- elo(train[trainM==i,], robje1$ratings)

More simply, we can call the function once to perform the same task.

> robje1 <- elo(train, cSt, init=2200, gamma=0, kfac=27)

The specified parameters are the defaults. The argument init specifies the initial rating
for players who are added to the system. The argument gamma can account for the
advantage of white, however it appears to have little effect for the chess data. The
argument kfac is the K factor, which by default is equal to 27 for all players. The Elo
system is fairly simple, and so several implementations introduce additional complexity
by allowing the K factor to depend on aspects of the model such as the player rating or
the number of games played by the player. The following give examples of this, where
kfac is specified using a function that is provided by the package.

> robje2 <- elo(train, cSt, kfac=krating, rv=2300, kv=c(32,26))

> robje3 <- elo(train, cSt, kfac=kgames, gv=30, kv=c(32,26))

2

The robje2 object employs a K factor of 26 for players rated above 2300 and a K factor
of 32 otherwise. The robje3 object employs a K factor of 26 for players who have played
more than 30 games and a K factor of 32 otherwise.

The function fide also implements the Elo system, but uses default arguments that are
more consistent with the application of the system by FIDE for rating chess players, and
consequently allows a little more flexibility with regard to the K factor. The functions
glicko and sticko implement the Glicko and Sticko systems respectively. These functions
can be used as follows.

> robjef <- fide(train, cSt)

> robjg <- glicko(train, cSt, init=c(2200,300), gamma=0, cval=15)

> robjs <- sticko(train, cSt, init=c(2200,300), gamma=0, cval=9,

+ hval=9, bval=0, lambda=2)

Sticko was developed by Alec Stephenson in 2012 as a variant of his winning entry in
a competition to find the most useful practical chess rating system, organized by Jeff
Sonas on Kaggle, a platform for data prediction competitions. The details are given in
an appendix as they are not available elsewhere. The bval parameter can be used to give
a per game bonus to each player; it typically improves prediction accuracy but it also
creates ratings inflation, so it will not be considered further.

The six objects we have created are S3 objects of class "rating", with corresponding
print, summary, predict, plot and hist methods. The following code uses the predict
method in conjunction with the metrics function to compare our six rating methods by
evaluating their predictive performance on the 2006 test data. The advantage of white
must be accounted for when making predictions. The predict function has an argument
gamma which by default is set to the value 30, as this seems to be roughly optimal across
all systems.

> pre1 <- predict(robje1, test); pre2 <- predict(robje2, test)

> pre3 <- predict(robje3, test); pref <- predict(robjef, test)

> prg <- predict(robjg, test); prs <- predict(robjs, test)

> metrics(testS, cbind(pre1,pre2,pre3,pref,prg,prs))

bdev mse mae

prs 88.668 84.509 86.303

prg 88.781 84.635 86.109

pre2 88.914 84.774 86.639

pre3 88.928 84.786 86.681

pre1 89.034 84.896 86.811

pref 89.390 85.282 87.573

The metrics function three metrics, scaled so that random guessing corresponds to the
number 100. The first is the binomial deviance, which is the most appropriate metric
for chess data. Smaller values on all metrics correspond to more accurate predictions.
We see that Sticko is best, followed by Glicko, then Elo (2), Elo (3) and Elo (1). The

3

Elo (fide) method is a worst because the parameters were not optimized; in the fide

implementation the K values are too low.

To quantify the comparison, we can say that Sticko gives a

(89.034− 88.675)

(100− 89.034)
= 3.27% (1)

improvement over Elo (with a constant K factor of 27) for this dataset under this metric,
whereas Glicko gives a 2.31% improvement over Elo, and Elo gives a 3.36% improvement
over the K factor implementation of FIDE.

With the exception of Elo (fide), the default parameters of modelling functions have been
approximately optimized for predictions on the 2006 test data. We therefore repeat the
process again, combining the training and test data to form a larger training dataset
for the period 1999 − 2006, and using the completely untouched 2007 validation data to
evaluate performance.

> train <- rbind(train, test)

> robje1 <- elo(train, cSt)

> robje2 <- elo(train, cSt, kfac=krating)

> robje3 <- elo(train, cSt, kfac=kgames)

> robjef <- fide(train, cSt, history = TRUE)

> robjg <- glicko(train, cSt, history = TRUE)

> robjs <- sticko(train, cSt, history = TRUE)

> pre1 <- predict(robje1, valid); pre2 <- predict(robje2, valid)

> pre3 <- predict(robje3, valid); pref <- predict(robjef, valid)

> prg <- predict(robjg, valid); prs <- predict(robjs, valid)

> metrics(validS, cbind(pre1,pre2,pre3,pref,prg,prs))

bdev mse mae

prs 89.886 84.763 85.494

prg 90.021 84.902 85.375

pre3 90.030 84.904 85.715

pre2 90.042 84.921 85.692

pre1 90.131 85.007 85.837

pref 90.366 85.265 86.426

With this additional data, Sticko tends to get further ahead of Glicko. Sticko gives a
2.48% improvement over Elo, while Glicko gives a 1.11% improvement over Elo.

Each object has a ratings component containing the current status of the updating
algorithm, and by default players are listed in order of rating, from highest to lowest.
The top ten players from the Elo (FIDE implementation), Sticko and Glicko objects can
be shown as follows, selecting from the set of players who have played at least 25 games
and have played at least once in 2006. The latter condition removes Garry Kasparov.
Note that Elo, Glicko and Sticko are relative rating systems, and therefore the mean of
the overall ratings is dependent on the system of initializations used in any particular
application. The number of games played is inaccurate here as they were essentially
unknown in the initial chessStart object. We use the chessPlayers dataset to identify
the player names.

Elo Ratings (Jan 2007):

4

> re <- robjef$ratings

> re <- re[re$Lag <= 11 & re$Games >= 25,-c(4:6,8:10)]

> PlayerN <- chessPlayers$Name[re$Player]

> row.names(re) <- 1:nrow(re)

> head(cbind(PlayerN, round(re,0)), 10)

PlayerN Player Rating Games Lag

1 Anand, Viswanathan 21308 2761 341 2

2 Topalov, Veselin 2115 2756 348 2

3 Kramnik, Vladimir 41314 2736 300 2

4 Morozevich, Alexander 16709 2723 370 0

5 Leko, Peter 28823 2722 373 1

6 Ponomariov, Ruslan 6961 2716 350 1

7 Aronian, Levon 27271 2709 489 1

8 Ivanchuk, Vassily 9394 2707 553 0

9 Adams, Michael 7772 2705 499 4

10 Mamedyarov, Shakhriyar 36438 2705 547 1

Glicko Ratings (Jan 2007):

> rg <- robjg$ratings

> rg <- rg[rg$Lag <= 11 & rg$Games >= 25,-(5:7)]

> PlayerN <- chessPlayers$Name[rg$Player]

> row.names(rg) <- 1:nrow(rg)

> head(cbind(PlayerN, round(rg,0)), 10)

PlayerN Player Rating Deviation Games Lag

1 Anand, Viswanathan 21308 2803 61 341 2

2 Topalov, Veselin 2115 2796 50 348 2

3 Kramnik, Vladimir 41314 2786 55 300 2

4 Morozevich, Alexander 16709 2778 48 370 0

5 Ponomariov, Ruslan 6961 2773 54 350 1

6 Leko, Peter 28823 2769 56 373 1

7 Polgar, Judit 23254 2760 66 287 2

8 Aronian, Levon 27271 2760 49 489 1

9 Mamedyarov, Shakhriyar 36438 2758 46 547 1

10 Radjabov, Teimour 36248 2756 50 466 2

Sticko Ratings (Jan 2007):

> rs <- robjs$ratings

> rs <- rs[rs$Lag <= 11 & rs$Games >= 25,-(5:7)]

> PlayerN <- chessPlayers$Name[rs$Player]

> row.names(rs) <- 1:nrow(rs)

> top <- head(cbind(PlayerN, round(rs,0)), 10); top

5

Name Rating
1 Topalov, Veselin 2783
2 Anand, Viswanathan 2779
3 Kramnik, Vladimir 2766
4 Mamedyarov, Shakhriyar 2754
5 Ivanchuk, Vassily 2750
6 Leko, Peter 2749
7 Aronian, Levon 2744
8 Morozevich, Alexander 2741
9 Adams, Michael 2735
10 Gelfand, Boris 2733
11 Radjabov, Teimour 2729
12 Svidler, Peter 2728
13 Polgar, Judit 2727
14 Ponomariov, Ruslan 2723
15 Navara, David 2719

Table 1: FIDE ratings for the top fifteen chess players, January 2007.

PlayerN Player Rating Deviation Games Lag

1 Anand, Viswanathan 21308 2759 65 341 2

2 Kramnik, Vladimir 41314 2757 61 300 2

3 Topalov, Veselin 2115 2756 59 348 2

4 Morozevich, Alexander 16709 2755 60 370 0

5 Ponomariov, Ruslan 6961 2751 60 350 1

6 Mamedyarov, Shakhriyar 36438 2750 59 547 1

7 Leko, Peter 28823 2741 61 373 1

8 Aronian, Levon 27271 2737 60 489 1

9 Radjabov, Teimour 36248 2731 61 466 2

10 Polgar, Judit 23254 2728 65 287 2

The ranking of both Glicko and Sticko methods are similar, but in Sticko the absolute
ratings are lower. This is a direct consequence of the parameter lambda, which draws
player’s ratings towards their opponents and therefore prevents spread at both the high
and low ends. Figure 1 shows this feature of the system, comparing Elo (the FIDE
implementation), Glicko and Sticko. Notice that the Sticko denisity is more peaked than
Glicko, so it acts more like Elo in the upper tail. When lambda is zero, the Glicko and
Sticko densities (not shown) are virtually identical. So lambda narrows the spread.

For comparison purposes, Table 1 shows FIDE ratings for the top fifteen players from
January 2007 as archived on their website. The top ten players under both Glicko and
Sticko all appear in the top fifteen FIDE ratings table. Note that our implementation
of FIDE Elo will not be the same as the actual FIDE ratings, perhaps due to different
initialization procedures and different player populations.

> hist(robjs, density=TRUE, lwd=3, ylim=c(0,0.004), xlim=c(1800,2800),

+ main = "Rating System Comparison")

> hist(robjg, density=TRUE, lwd=3, lty=2, col=2, add=TRUE)

6

> hist(robjef, density=TRUE, lwd=3, lty=3, col=3, add=TRUE)

> legend(2400,0.003, c("Sticko","Glicko","Elo"), lty=1:3,

+ col=1:3, lwd=3, cex=1.1)

1800 2000 2200 2400 2600 2800

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

Rating System Comparison

Rating

D
e
n
s
it
y

Sticko

Glicko

Elo

Figure 1: A comparison of ratings distributions.

The role of cval in Glicko is to increase the rating deviations over time. In Sticko this
role is shared by cval and hval, and so cval should typically be lower in Sticko than the
corresponding parameter in Glicko. This feature appears to make little or no difference
to the overall density of the ratings.

3 Producing Plots

The are two plotting methods for visualizing "rating" objects. The S3 method func-
tion hist will plot a histogram or density estimate of the player ratings. It can also
plot other features of the current status, selectable by the argument which. If the full
history of ratings for each time period is retained in the object, then hist can produce
a series of histograms. The following produces (not shown) 96 histograms, one for each
month, prompting the user between each display. By default, players are only depicted
on histograms if they have played 15 games or more.

> hist(robjs, history=TRUE, xlim = c(1900,2900))

7

The S3 method function plot can only be used if the full history of ratings has been
retained. It plots line traces across time of estimated ratings or other features for a
selected set of players. By default, active players are selected, and therefore these players
may be more likely to improve than the general population. Figures 2 and 3 are plotted
as follows. The first uses a default selection of the most active players in January 2001,
whereas the second selects the ‘current’ (i. e. at the end of the year 2006) top ten players
as identified previously.

2001 2002 2003 2004 2005 2006 2007

2
4
5
0

2
5
0
0

2
5
5
0

2
6
0
0

2
6
5
0

Sticko Ratings System

Year

S
ti
c
k
o

R

a
ti
n
g
s

Figure 2: Ratings over time for 10 active players.

> tv <- seq(2001, 2007, 1/12)[-73]

> plot(robjs, t0=25, lwd=2, tv=tv, xlab="Year")

> plot(robjs, players = top$Player, t0=25, lwd=2, tv=tv, xlab="Year")

> legend(2004, 2630, chessPlayers$Name[top$Player], lty=1:5,

+ col=1:6, lwd=3, cex=0.9)

The function plot can also analyse ratings inflation by setting the inflation argument
to TRUE. The mean rating of the top np players at any given time point is then plotted.
The example below shows the progression in the mean rating for the top 100 players,
comparing the FIDE implementation of Elo with Glicko and Sticko. System initialization
was performed in 1999 using FIDE ratings for all systems, and we therefore plot from
2001 to ensure that the systems have had time to stabilize. There does not appear to be
any evidence of ratings inflation for the top 100 players in this time period under Elo and
Sticko, but there is some suggestion of ratings inflation for Glicko.

8

2001 2002 2003 2004 2005 2006 2007

2
5
0
0

2
6
0
0

2
7
0
0

2
8
0
0

Sticko Ratings System

Year

S
ti
c
k
o

R

a
ti
n
g
s

Anand, Viswanathan
Kramnik, Vladimir
Topalov, Veselin
Morozevich, Alexander
Ponomariov, Ruslan
Mamedyarov, Shakhriyar
Leko, Peter
Aronian, Levon
Radjabov, Teimour
Polgar, Judit

Figure 3: Ratings over time for the ‘current’ (Jan 2007) top 10 players.

> tv <- seq(2001,2007,1/12)[-73]

> plot(robjs, t0=25, lwd=2, tv=tv, xlab="Year", ylim = c(2630,2690),

+ inflation=TRUE, np = 100)

> plot(robjg, t0=25, lwd=2, tv=tv, lty=2, col=2, inflation=TRUE,

+ add=TRUE, np = 100)

> plot(robjef, t0=25, lwd=2, tv=tv, lty=3, col=3, inflation=TRUE,

+ add=TRUE, np = 100)

> legend(2001,2690, c("Sticko","Glicko","Elo"), lty=1:3,

+ col=1:3, lwd=3, cex=1)

4 FIDE Ratings Implementation

The function fide implements the Elo system using exactly the same parameters and K
factors as FIDE. It does not implement the initialization system of FIDE, which would
require knowledge of the tournaments that correspond to the games. Instead, it simply
initializes players that enter the player pool with a fixed value defined by the init ar-
gument. Despite this, it can still be used to gain some insight into the FIDE ratings
implementation.

9

2001 2002 2003 2004 2005 2006 2007

2
6
3
0

2
6
4
0

2
6
5
0

2
6
6
0

2
6
7
0

2
6
8
0

2
6
9
0

Sticko Ratings System

Year

S
ti
c
k
o

R

a
ti
n
g
s

Sticko

Glicko

Elo

Figure 4: Average ratings over time for top 100 players in any given time period.

Purely from the perspective of obtaining accurate predictions of the true skill of a player,
we give the following recommendations for consideration of FIDE. We subsequently justify
these suggestions using the PlayerRatings package.

1. The K factor is increased by 5 for players who have played 30 or more games.

2. A second player rating not based on the Elo system is introduced.

The following code employs four different implementations: model (A) is FIDE, model
(B) is FIDE with the K factor increase, model (C) is the previous Glicko implementation
and model (D) is the previous Sticko implementation. Predictions are evaluated using
the 2007 validation data, using the default value of 30 for the white advantage parameter
gamma.

> rA <- fide(train, cSt)

> rB <- fide(train, cSt, kv = c(15,20,30))

> rC <- robjg; rD <- robjs

> pA <- predict(rA, valid); pB <- predict(rB, valid)

> pC <- predict(rC, valid); pD <- predict(rD, valid)

> metrics(validS, cbind(pA,pB,pC,pD))

10

bdev mse mae

pD 89.886 84.763 85.494

pC 90.021 84.902 85.375

pB 90.046 84.927 85.948

pA 90.366 85.265 86.426

It can be seen that increasing the K factor by 5 for players who have played 30 or more
games gives a large increase in predictive performance, with an improvement of 3.32%.

The Elo system has been in existence for more than 50 years. Rather than attempting
to add complexity to the K factor, a better approach for predictive performance is to
use a more modern system such as Glicko or Sticko. The systems explicitly model the
accuracy of the ratings as an estimate of skill, and therefore players who have not played
many games may have very high or very low ratings with large rating deviation values. It
therefore makes sense under these systems to only consider a rating official when the player
has played some fixed number of games. We see from above that Sticko improves over the
Elo implementation of FIDE by 4.98%, and Glicko improves over the Elo implementation
of FIDE by 3.58%.

Appendix: Sticko

Suppose that at the beginning of the ith month a player has a rating r and a variance v.
After the ith month, these values need to be updated.

Step 1: Increase the variance of each player using v = v + ct where c is a value to be
decided and t > 0 is the number of periods since the player last competed.

Step 2: Let (r∗, v∗) be the player’s rating and variance at the beginning of the (i + 1)th
month. Then, with q = ln(10)/400, the updating formulas are given as follows, where
(rj, vj) for j = 1, . . . ,m are the ratings and variances at the beginning of month i of the
player’s opponents in the m > 0 games that the player plays in that month, and where sj
are the scores in those games. Let r̄ = (

∑

j rj)/m and let wj be a colour indicator with
wj = 1 if the the player is white, wj = −1 if the player is black, and wj = 0 if this is
unknown.

v∗ =

(

1

v + hm
+ d

)

−1

r∗ = r + qv∗
m
∑

j=1

kj(sj − ej + b) + λ(r̄ − r)

where

kj =
1

√

1 + 3q2vj/π2

ej =
1

1 + 10−kj(r−rj+γwj)/400

d = q2
m
∑

j=1

k2
j ej(1− ej)

11

Prediction

If player a playing white with current rating vector (ra, va) has a game against player b
playing black with current rating vector (rb, vb), and γ is a white advantage parameter,
then the predicted score is given by

eab =
1

1 + 10−kab(ra−rb+γ)/400
,

where

kab =
1

√

1 + 3q2(va + vb)/π2
.

R Function

In the R function sticko, the argument gamma is γ, cval is
√

c, hval is
√

h, bval is
100b and lambda is 100λ. We use the same terminology as Glicko, so the player rating
deviations are the standard deviations of the ratings given by

√

v. In Step 1 above we
impose a ceiling of 350 on the deviations. This is not necessary but is done to ensure that
Sticko contains Glicko as a special case, so that sticko reproduces glicko upon setting
h = b = λ = 0. The R function predict has an argument gamma so that different γ values
can be used for constructing the ratings and for obtaining predictions.

12

